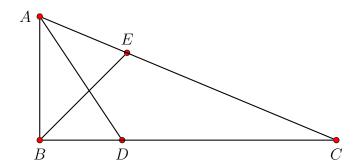
Problema FLATlandia Febbraio 2024

Soluzione n.3 (Trigonometrica)

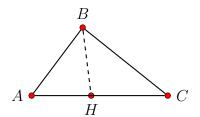


Dati: $\stackrel{\triangle}{ABC}$ triangolo rettangolo, AD bisettrice di \widehat{A} , BE bisettrice di \widehat{B} , $\overline{AE}=5$ e $\overline{EC}=12$.

Nel problema posto si chiede di determinare quanto vale $\frac{\overline{AB}}{\overline{BD}}$ e noi dimostreremo che $\frac{\overline{AB}}{\overline{BD}} = \frac{3}{2}$.

Dimostrazione. Il risultato che vogliamo provare si basa sul seguente:

Lemma 1. Supponiamo di avere un triangolo $\stackrel{\hookrightarrow}{ABC}$ e supponiamo che BH sia la bisettrice dell'angolo in \widehat{B}



In una tale situazione vale la seguente proporzione: \overline{AB} : $\overline{BC} = \overline{AH}$: \overline{HC}

Indichiamo per comodità con $\overline{AB} = a$, $\overline{BC} = b$ e con $\overline{BD} = c$, per il **Lemma** precedente applicato alla bisettrice BE possiamo scrivere la seguente relazione: a:b=5:12.

La relazione precedente si può scrivere come $\frac{a}{b} = \frac{5}{12}$, dunque se indichiamo con $\hat{C} = \alpha$, allora $\tan \alpha = \frac{5}{12}$. Osserviamo che con semplici conteggi si ha che l'angolo $\widehat{ADB} = \frac{\pi}{4} + \frac{\alpha}{2}$ e possiamo

concludere che $\frac{\overline{AB}}{\overline{BD}} = \tan\left(\frac{\pi}{4} + \frac{\alpha}{2}\right) = \frac{\tan\left(\frac{\pi}{4}\right) + \tan\left(\frac{\alpha}{2}\right)}{1 - \tan\left(\frac{\pi}{4}\right) \cdot \tan\left(\frac{\alpha}{2}\right)} = \frac{1 + \tan\left(\frac{\alpha}{2}\right)}{1 - \tan\left(\frac{\alpha}{2}\right)}$. Non resta che cal-

colare $\tan\left(\frac{\alpha}{2}\right)$. Dalle formule parametriche sappiamo che $\tan(\alpha) = \frac{2t}{1-t^2} = \frac{5}{12}$ dove $t = \tan\left(\frac{\alpha}{2}\right)$.

Da semplici calcoli dalla relazione $\frac{2t}{1-t^2} = \frac{5}{12}$ si trova che $t = \frac{1}{5}$ e quindi possiamo concludere che

Da semplici calcoli dalla relazione
$$\frac{1}{1-t^2} = \frac{1}{12}$$
 si trova che $t = \frac{1}{5}$ e quindi possiamo concludere che $\frac{\overline{AB}}{\overline{BD}} = \frac{1+\tan\left(\frac{\alpha}{2}\right)}{1-\tan\left(\frac{\alpha}{2}\right)} = \frac{1+\frac{1}{5}}{1-\frac{1}{5}} = \frac{\frac{6}{5}}{\frac{4}{5}} = \frac{6}{5} \cdot \frac{5}{4} = \frac{3}{2}$. Quello che volevamo provare è stato ottenuto in

quanto abbiamo provato che $\frac{AB}{\overline{R}\overline{D}} = \frac{3}{2}$